
Technical Report:
Learning to Plan Maneuverable and Agile Flight

Trajectory with Optimization Embedded Networks

Zhichao Han∗,1,2, Long Xu∗,1,2 and Fei Gao1,2

∗ Equal contribution
1Institute of Cyber-Systems and Control,

College of Control Science and Engineering,
Zhejiang University, Hangzhou 310027, China.

2Huzhou Institute of Zhejiang University, Huzhou 313000, China.
Corresponding author: Fei Gao Email: fgaoaa@zju.edu.cn

Abstract

In recent times, an increasing number of researchers have been devoted to uti-

lizing deep neural networks for end-to-end flight navigation. This approach

has gained traction due to its ability to bridge the gap between perception

and planning that exists in traditional methods, thereby eliminating delays be-

tween modules. However, the practice of replacing original modules with neu-

ral networks in a black-box manner diminishes the overall system’s robustness

and stability. It lacks principled explanations and often fails to consistently

generate high-quality motion trajectories. Furthermore, such methods often

struggle to rigorously account for the robot’s kinematic constraints, resulting

in the generation of trajectories that cannot be executed satisfactorily. In this

work, we combine the advantages of traditional methods and neural networks

1

by proposing an optimization-embedded neural network. This network can

learn high-quality trajectories directly from visual inputs without the need of

mapping, while ensuring dynamic feasibility. Here, the deep neural network

is employed to directly extract environment safety regions from depth images.

Subsequently, we employ a model-based approach to represent these regions

as safety constraints in trajectory optimization. Leveraging the availability of

highly efficient optimization algorithms, our method robustly converges to fea-

sible and optimal solutions that satisfy various user-defined constraints. More-

over, we differentiate the optimization process, allowing it to be trained as a

layer within the neural network. This approach facilitates the direct inter-

action between perception and planning, enabling the network to focus more

on the spatial regions where optimal solutions exist. As a result, it further

enhances the quality and stability of the generated trajectories.

Introduction

Unmanned aerial vehicles (UAVs) have gained widespread adoption in various societal do-

mains, such as aerial photography, exploration, and search and rescue, due to their compact

hardware design and agile maneuverability. Efficient and robust navigation modules play a cru-

cial role in achieving UAV autonomy, attracting significant attention from both academia and

industry.

Traditional navigation tasks can be divided into perception and motion planning. Percep-

tion modules process raw data from sensors such as depth cameras to construct an occupancy

map and derive environment representations conducive to motion planning, such as Euclidean

signed distance fields (ESDF) (1) or neural radiance fields (NeRF) (2). Motion planning mod-

ules, on the other hand, utilize the constructed map along with robot state, kinematics, and

2

obstacle avoidance constraints to compute energy-minimizing trajectories with time regulariza-

tion. While traditional navigation strategies offer intuitive engineering solutions and theoret-

ical completeness and interpretability, they suffer from delays in the modular decomposition

framework, adversely affecting agile flight capabilities of quadcopters (3). Moreover, the lay-

ered framework can cause a lack of interconnections between sub-modules, making the flight

performance susceptible to sensor noise and often requiring manual fine-tuning of numerous

parameters by engineers (4).

In recent years, there has been increasing research interest in directly fusing perception

and planning modules into a single neural network. This end-to-end pipeline enables learning

motion directly from sensor data, bypassing explicit mapping. However, such strategies result

in a black-box navigation system, making debugging challenging. Furthermore, attaining a

favorable balance between dynamic feasibility, obstacle avoidance, and high-quality trajectory

generation places a significant burden on the network. For instance, due to physical platform

or task constraints, it is often desired to impose dynamic constraints such as maximum velocity

and acceleration constraints on the trajectories. To address these issues, researchers often resort

to designing complex strategies for the network, which can impact optimality and still fail to

guarantee dynamic feasibility of the trajectories.

In this work, we combine the strengths of traditional trajectory optimization and neural

networks to develop an end-to-end visual navigation system capable of generating trajecto-

ries directly from depth information without the need for explicit mapping. A key feature of

our approach, compared to conventional learning-based motion planning algorithms, is the in-

corporation of numerical optimization within the neural network, coupled with joint training.

This method alleviates the burden on the network, enhances the interpretability of the system,

and ensures optimal and dynamically feasible motion trajectories. Moreover, our method is

scalable and allows for the inclusion of additional user-defined constraints without the need

3

for retraining. In our technical approach, we utilize the neural network to directly extract

safe guidance regions from the depth information, which are then transformed into geomet-

ric spatial constraints considered during trajectory optimization. The trajectory optimization

process incorporates these constraints as safety boundaries while simultaneously integrating

user-specified dynamic constraints, resulting in efficient convergence (∼1ms) to high-quality

trajectories. This ensures that the quadcopter remains maneuverable and agile even in complex

environments. Unlike conventional learning-based black-box navigation systems, our optimiza-

tion algorithm, enabled by a clear mathematical model, robustly converges to optimal solutions

within the feasible topological space generated by the network. Furthermore, by making nu-

merical optimization differentiable, it can be modeled as a layer and trained jointly with the

neural network. This allows the gradient of the evaluation loss of the trajectories to be directly

backpropagated to the network, enabling the network to focus on the spatial regions where

the optimal trajectories reside. Moreover, to ensure sufficient exploration of the environment

during actual flight, we introduce motion primitives within the network. The network outputs

the selection probabilities for each motion primitive, and based on these probabilities, safe and

feasible spaces are assigned to certain primitives. In practical applications, we can parallelly

perform trajectory optimization within the safe spaces represented by high-probability motion

primitives, and select the optimal trajectory as the execution plan. The main contributions of

this paper can be summarized as follows:

• We have designed a lightweight neural network capable of directly identifying valuable

motion primitives from depth information, which are then used to generate the necessary

safety spatial constraints for subsequent numerical optimization.

• By making trajectory optimization differentiable, we treat it as a layer and train it jointly

with the network. This seamless integration enables the neural network to evolve directly

4

towards optimal trajectories, eliminating any gaps between the optimization and learning

processes.

• By leveraging the strengths of neural networks and numerical optimization, we propose

a high-quality, map-free planning approach. This approach enables the instantaneous

generation of optimal and safe trajectories, strictly adhering to dynamic constraints.

Related Work

Classical Motion Planning Algorithms

Gradient-based motion planning (5–10) is widely adopted for generating local trajectories for

UAVs, treating the problem as constrained nonlinear optimization. Such methods typically

require the explicit construction of the environment through depth information, followed by

the manual design of strategies to extract safety constraints for trajectory optimization. Eu-

clidean Signed Distance Fields (ESDF) are widely used for modeling safety constraints, as they

provide signed distance and gradient information from any grid point to obstacles within the

space (5, 6). However, constructing ESDF incurs additional computational costs and involves a

trade-off between efficiency and accuracy, as higher resolutions exponentially increase compu-

tation and memory requirements. Zhou et al. (7) proposed the well-known ego planner, which

avoids ESDF construction by continuously generating safe guidance paths within an iterative

framework to provide obstacle avoidance gradients. However, this method lacks convergence

guarantees and may be prone to getting trapped in unsafe local minima, especially in com-

plex environments. Furthermore, using guidance paths to deform trajectories deviates from

the original trajectory optimization problem formulation, affecting optimality. Corridor-based

methods (9,10) have also gained popularity in the field of local motion planning. These methods

extract feasible convex hulls from the environment point cloud using geometric computations

5

to model safety constraints as linear or cone constraints. However, these methods require an

additional collision-free path to provide seed points for the convex hull. Such paths are often

obtained using low-dimensional search algorithms like A* or hybrid A*. These search algo-

rithms often do not consider the robot’s higher-order kinematics, resulting in convex hulls that

are not conducive to generating maneuverable and dynamically feasible trajectories.

Learning-Based Motion Planning Algorithms

Learning-based methods (3, 4, 11–16) have emerged as promising approaches in the field of

local planning, eliminating the need for explicit mapping and reducing latency. Loquercio et

al. (3) leveraged deep convolutional neural networks to learn flight trajectories from depth im-

ages, using human pilot trajectories as supervision. However, this method requires high-quality

and large-scale datasets. Yang et al. (13) proposed Iplanner, which incorporated safety loss

in the trajectory generation process to emphasize obstacle avoidance. Their work further im-

proved by fusing semantic information (14), allowing the robot to consider terrain features,

which is crucial for quadrupedal navigation. Kulkarni et al. (15) employed reinforcement learn-

ing for end-to-end navigation and enhanced safety through a custom depth collision encoder.

These methods heavily rely on the capabilities of neural networks and lack principled guaran-

tees regarding kinematic feasibility and trajectory optimality. Recently, some approaches have

combined networks with numerical optimization. For instance, a particular work (16) learned

collision probabilities for any point in space using a network, which were further modeled as

safety constraints in trajectory optimization. Similarly, another work (4) addressed finer obsta-

cle avoidance by modeling the robot’s shape as a convex hull and predicting the signed distance

between the hull and the nearest obstacle using a neural network. Although these works inte-

grate networks and optimization for robot navigation, a significant difference compared to our

approach is that the network and optimization are independent components in the aforemen-

6

tioned works. In contrast, our algorithm incorporates differentiable optimization as part of the

network training process. Consequently, our method facilitates the evolution of the network

towards directions beneficial for subsequent optimization, ultimately generating higher-quality

solutions while ensuring maneuverability and agile flight.

Methodology

End-to-End Navigation System Overview

In this work, we employ a unique class of trajectories called MINCO (17) to represent flight

trajectories ξ. MINCO is a special multi-piece polynomial representation parameterized by

piece durations T = [T1, T2, ..., TN]
T ∈ N+ and waypoints q = [q1, q2, ..., qN−1] ∈ R3×(N−1),

where N is denoted as the number of trajectory pieces. This compact representation naturally

satisfies the state constraints at the start and end points, as well as the high-order continuity

of adjacent polynomials at the waypoints, without the need for additional constraints. Building

upon this representation, the trajectory optimization is formulated as the minimization of control

energy with first-order temporal regularization, and can be expressed as follows:

min
q,T

J =

∫ ||T||1

0

(ξ(u)(t))TWξ(u)(t)dt+ ρ||T||1 (1)

s.t. G(ξ(t), ξ(1)(t), ..., ξ(u)(t)) ≤ 0,∀t ∈ [0, ||T||1] (2)

ξ(t) ∈ F ,∀t ∈ [0, ||T||1], (3)

where W is a positive definite energy weight matrix. ρ is the temporal regularization weight

and u represents the dimension of the control variable. G represents pre-defined kinematic

constraints, which are specifically formulated based on user’s requirements and the robot’s dy-

namics. Additionally, Eq. (3) represents the obstacle avoidance constraints based on the flight

corridor F . Typically, this constraint can be accurately modeled as a linear or conic constraint

with respect to the robot’s position coordinates. Due to advancements in the field of opti-

7

C
o
n
ca
te
n
at
e

…

Start
States

End
States

Depth
Encoder

Embedding

Selected
Primitive

Concatenate

Add

Safe Corridor

Safe Corridor
Extraction Layer

Differentiable
Trajectory Optimization

Primitive Embedding

Corridor Biases with Size

Optimized
Trajectory

Velocity

Primitive
Library

Probability
Distributions

Fig. 1. Navigation framework.

mization, once the trajectory optimization Eq. (1-3) is fully formulated and modeled, mature

gradient-based numerical methods are available that can efficiently converge to high-quality so-

lutions at low computational cost. However, accurately extracting feasible spaces from complex

and cluttered environments during actual flight poses a significant challenge. As mentioned in

Sect. I, it involves multiple modules such as sensor data processing, mapping, graph search,

etc., and is susceptible to noise, making this aspect the Achilles’ heel of the entire navigation

system. Therefore, in this work, we intuitively explore the utilization of neural networks to

learn flight corridors directly from depth images, without the need for explicit mapping. Essen-

tially, we employ neural networks to learn safety constraints within the trajectory optimization

process.

Our navigation framework, as illustrated in Fig. 1, can be broadly divided into a network

layer for extracting flight corridors and a differentiable trajectory optimization layer. The net-

work layer takes inputs such as depth measurements, the current state of the robot, and the

target point’s position to output flight corridors. Subsequently, the trajectory optimization layer

plans a high-quality spatial-temporal optimal trajectory constrained within the flight corridors,

while strictly adhering to specified dynamic constraints. Furthermore, the inputs and outputs of

8

each module, such as the target point, flight corridors, and planned trajectory, are normalized

with respect to the robot’s current body frame. This normalization enhances the generalization

capability of the model and reduces the dependence of the entire navigation system on global lo-

calization. In the following sections, we will first introduce the structural design of the network

layer and provide a detailed description of its output. Then, we discuss the gradient propagation

of the optimal solution generated by the trajectory optimization layer with respect to spatial

constraints, which forms the foundational basis for jointly training the embedded optimization

within the network.

Learning-Based Safe Corridor Extraction Layer

Before delving into the specific details of the network structure, we first instantiate its output

representation. For continuous-time constraints Eq. (3), similar to the approach (18), we dis-

cretize each piece of the polynomial into λ constraint points. Subsequently, we control the

entire trajectory by imposing constraints at these constraint points:

ξ(t) ∈ F ,∀t ∈ [0, ||T||1] ⇐⇒

ξi(
j

λTi

) ∈ Fϕ
i,j∀i ∈ [1, ..., N],∀j ∈ [1, ..., λ], (4)

where ϕ is the parameters of the neural network. The physical significance of Eq. (4) lies in

the fact that the neural network needs to assign a safety convex hull to each constraint point

along the trajectory. Consequently, the network is required to output a total of Nλ convex hulls.

Moreover, we would like to emphasize that the network has the theoretical capability to output

convex hulls of arbitrary shapes. However, for the sake of simplicity and ease of understanding,

we define each convex hull as a cube parameterized by its center and length.

Here, we design a novel neural network based on motion primitives, which enables us to

fulfill the aforementioned requirements. This network initially employs deep convolutional and

9

fully connected layers to extract features from depth images and the initial and final states of the

robot. These features are fused to obtain a latent representation, denoted as M. Subsequently,

M is further processed through a neural network to output a probability distribution over a pre-

built library of motion primitives ζ . It is worth mentioning that each motion primitive z, in order

to align with the subsequent corridor parameters, is represented by Nλ points. Furthermore, the

selected motion primitive z∗ and M are jointly fed into the final corridor generation module.

One of its roles is to refine the motion primitives for improved accuracy, with the modified point

coordinates serving as the centers of the safety cubes. Additionally, this module is responsible

for assigning the corresponding length to each cube. It is worth noting that the advantages of

this motion-primitive-based structure are evident in at least two aspects. Firstly, compared to

directly regressing the final cube centers, our approach first obtains a probability distribution

and selects better motion primitives. This process can be modeled as a classification problem,

which reduces the network’s burden and facilitates learning and convergence. Secondly, during

practical deployment, we have the flexibility to select multiple motion primitives based on their

probabilities. This allows for parallel optimization of multiple trajectories, thereby enhancing

the robot’s exploration capabilities in diverse environmental topologies. Simultaneously, it also

increases the system’s fault tolerance.

Regarding the construction of the motion primitive library, in our practical experiments, we

recorded tens of thousands of trajectories using classical navigation algorithms. These trajec-

tories are uniformly discretized into Nλ points and transformed into the local body coordinate

system. To eliminate unnecessary duplicate motion primitives and limit the size of the library,

we normalize the endpoint distances and directions for all motion primitive data. Finally, we

employ the k-means algorithm to cluster the processed dataset and collect approximately 100

elite motion primitives as the library.

10

Differentiable Numerical Optimization Layer

In this section, we discuss how to make the optimization process differentiable, allowing us to

backpropagate the gradients of the loss applied to the trajectory onto the network parameters

during training. For simplicity, we denote the optimization variables as x = (q,T). Then, the

nonlinear optimization problem Eq. (1-3) with inequality constraints can be generally reformu-

lated as follows:

min
x

J = J(x) (5)

s.t. F (x, ϕ) ≤ 0. (6)

Here, F represents a general formulation that encompasses the original constraints Eq. (2,3),

and ϕ denotes the neural network parameters. Assuming x∗ is the optimal solution to this

optimization problem, and L is the evaluation loss applied to the trajectory during training, the

gradient of the neural network can be computed as follows:

∇ϕL = ∇ϕx∇xL (7)

Generally, the term ∇xL can be analytically computed. Therefore, our focus now shifts to dis-

cussing the estimation of ∇ϕx. Due to the usage of gradient-based numerical solvers, a intuitive

method for estimating parameter gradients, known as unrolling (19–23), involves maintaining

the entire computational graph throughout the iteration process. However, this approach poses

significant challenges in terms of memory usage and efficiency, particularly when dealing with

complex problem formulations. Moreover, it may also face issues related to gradient divergence

or vanishment. In this work, we assume the efficient attainment of the optimal solution x∗ to

the problem, and thus employ the implicit function differentiation theorem from Dontchev and

Rockafellar (24). This method relies on leveraging the first-order optimality condition (25, 26)

of the optimization problem to analytically estimate the gradients of the parameters without

11

the need for explicit unrolling of the entire iteration process. The Lagrangian function for this

optimization problem is as follows:

L(x, λ) = J(x) + λTF (x, ϕ). (8)

Then, the corresponding KKT (Karush-Kuhn-Tucker) conditions are as follows:

∇xJ +∇xFλ∗ = 0,

D(λ∗)F (x∗, ϕ) = 0,

F (x∗, ϕ) ≤ 0,

λ∗ ≥ 0, (9)

where D(·) denotes a diagonal matrix from a vector. Then, we apply the total differential

operator d to the equations in KKT conditions:

(∇x,xJ + (∇x,xFλ∗)T)dx+∇xFdλ+ (∇x,ϕFλ∗)Tdϕ = 0,

D(F)dλ+D(λ∗)∇xFdx+D(λ∗)∇ϕFdϕ = 0. (10)

Subsequently, Eq. (10) is further transformed into a compact matrix form:[
dx
dλ

]
= −

[
∇x,xJ + (∇x,xFλ∗)T) ∇xF

D(λ∗)∇xF D(F)

]−1 [
(∇x,ϕFλ∗)T

D(λ∗)∇ϕF

]
dϕ. (11)

By solving this system of equations, we can analytically obtain the desired Jacobian matrix

∇ϕx, which in turn allows us to derive the final parameter gradients ∇ϕL.

Results

Ablation Experiments

To verify the effectiveness of embedding the numerical optimization into the neural network,

we conducted ablation experiments in a test set with more than ten thousand items of data,

12

quantitatively comparing the safety of guidance regions extracted by the neural network and the

energy consumption of the optimized trajectories, as shown in Table 1. We consider it unsafe

when the edge of the guidance region touches any obstacle. Besides, the integral with respect

to time of the square of the jerk of the trajectory is utilized to measure the energy consumption.

Table 1: Ablation Experiments.

Safety Ratio ↑ Avg. Energy ↓

w/o Opt. 82.1% 7.262

w/ Opt. 85.2% 5.285

Since we remove the imitation of the ground truth and add the loss function minimizing the

energy of the trajectory after embedding numerical optimization in the neural network, the safe

regions extracted by the network are quickly tuned towards the direction of reducing energy

consumption. At the same time, as mentioned in the previous section, with backpropagation

of the energy loss function, we can remove the requirement for the safe region to be as large

as possible, which makes the security constraints of the region easier to satisfy, allowing the

network to focus more on containing the optimal solution, thus resulting in a higher safety

ratio.

Simulation Experiments

We deploy the algorithm on a simulated quadcopter, conducting experiments in an environment

with dynamics simulation, as shown in Fig. 2. The size of the simulation environment is 50m

× 50m, which contains randomly generated obstacles in the form of columns and loops. With

known localization, we require the quadcopter to start from a random location at the edge of the

map and continuously replan to traverse the entire unknown environment.

13

PID ControllerControl command

Local Trajectory Planning

Trajectory

Learning-Based
Safe Corridor

Extraction Layer

Differentiable
Trajectory

Optimization

Quadcopter

Optimized
Trajectory

Obstacle

Quadcopter

Flight
Corridors

Depth Images

Ro
bo

t S
ta

te
s

Local Target

Fig. 2. Simulation experiments and system framework.

In addition, we quantitatively compare the proposed method with the state-of-the-art algo-

rithm Ego-planner (7) in terms of objective function value and total processing latency, with

more than four thousand comparative tests. All simulations are run on a desktop with an Intel

i9-10900K CPU and a Nvidia GeForce RTX3070Ti GPU.

In Table 2, our approach achieves better performance than Ego-planner (7). The use of

collision-free trajectories as ground truth to supervise and training based on backpropagation

of the results of trajectory optimization make the neural network give safety regions that more

14

Table 2: Algorithm Comparisons.

Objective Fu
-nction Value

↓ Total Proces-
sing Latency

↓

proposed 59.90 ± 8.71 3.49 ± 0.73ms

Ego-planner (7) 61.65 ± 11.73 24.33 ± 16.58ms

easily contains the optimal solution. Thus, the proposed algorithm has a greater advantage

in terms of objective function value. Compared to classical pipelines, neural networks have

more stable inference times and outputs, bringing low standard deviations. Also, the end-to-end

pipeline and parallel GPU-based reasoning make it have lower latency.

Discussion

In this work, we propose a novel planning framework for maneuverable and agile flight of

quadrotors. Using an embedded optimized neural network, we plan trajectories directly from

visual measurements without the need for explicit mapping, while being able to guarantee the

dynamical feasibility of the trajectories. Benefiting from the differentiable trajectory optimiza-

tion, the burden on the neural network is relieved to more easily extraction of safe regions

containing optimal solutions. Simulation experiments prove the efficiency of the pipeline com-

pared to state-of-the-art method. In the future, more quantitative experiments will be carried

out in high speed flights in complex environments, where the success rate of classical meth-

ods will plummet due to high latency. We will also further optimize the proposed pipeline and

conduct more comparisons with other learning-based methods. Besides, this framework will be

deployed to real quadrotors for more tests.

15

References

1. L. Han, F. Gao, B. Zhou, S. Shen, Fiesta: Fast incremental euclidean distance fields for

online motion planning of aerial robots, 2019 IEEE/RSJ International Conference on Intel-

ligent Robots and Systems (IROS) (IEEE, 2019), pp. 4423–4430.

2. M. Adamkiewicz, T. Chen, A. Caccavale, R. Gardner, P. Culbertson, J. Bohg, M. Schwager,

Vision-only robot navigation in a neural radiance world, IEEE Robotics and Automation

Letters 7, 4606–4613 (2022).

3. A. Loquercio, E. Kaufmann, R. Ranftl, M. Müller, V. Koltun, D. Scaramuzza, Learning

high-speed flight in the wild, Science Robotics 6, eabg5810 (2021).

4. R. Han, S. Wang, S. Wang, Z. Zhang, J. Chen, S. Lin, C. Li, C. Xu, Y. C. Eldar, Q. Hao,

et al., Neupan: Direct point robot navigation with end-to-end model-based learning, arXiv

preprint arXiv:2403.06828 (2024).

5. B. Zhou, J. Pan, F. Gao, S. Shen, Raptor: Robust and perception-aware trajectory replan-

ning for quadrotor fast flight, IEEE Transactions on Robotics 37, 1992–2009 (2021).

6. B. Zhou, F. Gao, L. Wang, C. Liu, S. Shen, Robust and efficient quadrotor trajectory gen-

eration for fast autonomous flight, IEEE Robotics and Automation Letters 4, 3529–3536

(2019).

7. X. Zhou, Z. Wang, H. Ye, C. Xu, F. Gao, Ego-planner: An esdf-free gradient-based local

planner for quadrotors, IEEE Robotics and Automation Letters 6, 478–485 (2020).

8. B. Zhou, F. Gao, J. Pan, S. Shen, Robust real-time uav replanning using guided gradient-

based optimization and topological paths, 2020 IEEE International Conference on Robotics

and Automation (ICRA) (IEEE, 2020), pp. 1208–1214.

16

9. F. Gao, L. Wang, B. Zhou, X. Zhou, J. Pan, S. Shen, Teach-repeat-replan: A complete

and robust system for aggressive flight in complex environments, IEEE Transactions on

Robotics 36, 1526–1545 (2020).

10. J. Tordesillas, J. P. How, Mader: Trajectory planner in multiagent and dynamic environ-

ments, IEEE Transactions on Robotics 38, 463–476 (2021).

11. R. E. Allen, M. Pavone, A real-time framework for kinodynamic planning in dynamic

environments with application to quadrotor obstacle avoidance, Robotics and Autonomous

Systems 115, 174–193 (2019).

12. G. Chou, D. Berenson, N. Ozay, Uncertainty-aware constraint learning for adaptive safe

motion planning from demonstrations, Conference on Robot Learning (PMLR, 2021), pp.

1612–1639.

13. F. Yang, C. Wang, C. Cadena, M. Hutter, iplanner: Imperative path planning, arXiv preprint

arXiv:2302.11434 (2023).

14. P. Roth, J. Nubert, F. Yang, M. Mittal, M. Hutter, Viplanner: Visual semantic imperative

learning for local navigation, arXiv preprint arXiv:2310.00982 (2023).

15. M. Kulkarni, K. Alexis, Reinforcement learning for collision-free flight exploiting deep

collision encoding, arXiv preprint arXiv:2402.03947 (2024).

16. M. Jacquet, K. Alexis, N-mpc for deep neural network-based collision avoidance exploiting

depth images, arXiv preprint arXiv:2402.13038 (2024).

17. Z. Wang, X. Zhou, C. Xu, F. Gao, Geometrically constrained trajectory optimization for

multicopters, IEEE Transactions on Robotics 38, 3259–3278 (2022).

17

18. Z. Han, Y. Wu, T. Li, L. Zhang, L. Pei, L. Xu, C. Li, C. Ma, C. Xu, S. Shen, et al.,

An efficient spatial-temporal trajectory planner for autonomous vehicles in unstructured

environments, IEEE Transactions on Intelligent Transportation Systems (2023).

19. C. Finn, P. Abbeel, S. Levine, Model-agnostic meta-learning for fast adaptation of deep

networks, International conference on machine learning (PMLR, 2017), pp. 1126–1135.

20. M. Bhardwaj, B. Boots, M. Mukadam, Differentiable gaussian process motion planning,

2020 IEEE international conference on robotics and automation (ICRA) (IEEE, 2020), pp.

10598–10604.

21. B. A. Pearlmutter, J. M. Siskind, Reverse-mode ad in a functional framework: Lambda

the ultimate backpropagator, ACM Transactions on Programming Languages and Systems

(TOPLAS) 30, 1–36 (2008).

22. C. Zhang, V. Lesser, Multi-agent learning with policy prediction, Proceedings of the AAAI

Conference on Artificial Intelligence (2010), vol. 24, pp. 927–934.

23. T. Han, Y. Lu, S.-C. Zhu, Y. N. Wu, Alternating back-propagation for generator network,

Proceedings of the AAAI Conference on Artificial Intelligence (2017), vol. 31.

24. A. L. Dontchev, R. T. Rockafellar, Implicit functions and solution mappings, vol. 543

(Springer, 2009).

25. B. Amos, J. Z. Kolter, Optnet: Differentiable optimization as a layer in neural networks,

International Conference on Machine Learning (PMLR, 2017), pp. 136–145.

26. A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, J. Z. Kolter, Differentiable convex

optimization layers, Advances in neural information processing systems 32 (2019).

18

